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Cavity-bias sampling in reaction ensemble
Monte Carlo simulations

J. K. BRENNAN*

US Army Research Laboratory, Weapons and Materials Research, Directorate,
Aberdeen Proving Ground, MD 21005-5066, USA

(Received 18 February 2005; accepted 10 May 2005)

A methodology is presented to sample efficiently configurations of reacting mixtures in
the reaction ensemble Monte Carlo simulation technique. A cavity-biasing scheme is used,
which more effectively samples configurations than conventional random sampling. Akin
to other biasing schemes that are implemented into insertion-based Monte Carlo methods
such as Gibbs ensemble Monte Carlo, the method presented here searches for space in
the reacting mixture whereby the insertion of a product molecule is energetically favoured.
This sampling bias is then corrected in the acceptance criteria. The approach allows for the
study of reacting mixtures at high density as well as for polyatomic molecular species. For
some cases, the method is shown to increase the efficiency of the reaction steps by a factor
greater than 20. The approach is shown to be readily generalized to other biasing schemes
such as orientational-biasing of polar molecules and configurational-biasing of chain-like
molecules.

1. Introduction

The reaction ensemble Monte Carlo simulation method
(RxMC) is a powerful simulation tool for studying
the behaviour of chemical reaction equilibria [1, 2].
The RxMC technique can be used to predict the shift
in reaction equilibria for an ideal-gas phase reaction in
a non-ideal environment such as a condensed phase,
a solvent, or a porous material. Recent applications of
the RxMC method include reactions of plasmas [3],
reactions in porous carbons [4–7] and porous mem-
branes [8], reactions under shock conditions [9], and
reactions in supercritical fluid solvents [10, 11].
Comprehensive reviews of the RxMC method [12] and
its applications to date [13] can be found elsewhere.
As part of the configuration sampling algorithm in the

RxMC method, the insertion and deletion of molecules
is required to satisfy the reaction equilibrium conditionPC

i¼1 �ji�i ¼ 0, where �ji is the stoichiometric coefficient
of species i in chemical reaction j, �i is the chemical
potential of species i in the reacting mixture, and C is
the total number of reactants and products. Analogous
to other Monte Carlo (MC) methods such as grand
canonical ensemble MC (GCMC) [14, 15] and Gibbs
ensemble MC (GEMC) [16, 17] that require the insertion

of molecules into the simulation box, random insertion
fails for high density systems or for multi-site models
such as polymers in even moderately dense systems.
Conventional random sampling fails due to the high
probability of the inserted molecule encountering
an overlap with molecules already in the simulation
box, generating a configuration that is energetically
unfavorable and most probably rejected.

Previous applications of the RxMC method success-
fully used conventional random sampling because low
density phases were studied or simple molecular models
were considered. In this work, we present a cavity-bias
sampling method for the RxMC technique that makes
it possible to simulate reaction equilibria at conditions
where conventional sampling fails. The method, termed
cavity-bias reaction ensemble Monte Carlo (CB-RxMC)
is analogous to bias sampling schemes used in the
GCMC [18, 19] and GEMC simulation methods [20].
As the name implies, the method searches for cavities in
the system into which product molecules can be success-
fully inserted. The method can be easily generalized to
include other biasing methods such as orientational-
biasing and configurational-biasing.

In the following, we briefly review the essentials of
the RxMC method, after which we present the formal-
ism of our cavity-bias sampling method for the RxMC
technique. We present an example of the method to
demonstrate its efficiency.Email: jbrennan@arl.army.mil
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2. Formalism

2.1. Reaction ensemble Monte Carlo

TheRxMCmethod is designed tominimize theGibbs free
energy thus determining the true chemical equilibrium
state irrespective of rate limitations. RxMC requires
intermolecular potentials for the molecular species that
are present in the reacting mixture. RxMC also requires
inputting the ideal-gas internal modes for each react-
ing species, information which is readily available
in standard sources [21, 22] or can be generated using
quantum mechanics methods. Finally, the particular
reactions occurring in the system must be specified.
Implementation of RxMC provides information

about the chemical equilibrium state, such as the density
of the reacting mixture, mole fractions of the reacting
species, the change in the total number of moles, and
the internal energy. RxMC can be performed in many
different types of ensembles [12], including canonical,
isothermal–isobaric, Gibbs and other less common
ensembles [23]. Furthermore, RxMC can be performed
for multiple reactions and multiple phases [24]. RxMC
does not simulate bond breaking or formation; rather,
RxMC directly samples forward and reverse reaction
steps as Monte Carlo-type moves according to the
stoichiometry of the reactions being considered.
The isothermal–isobaric ensemble version of the

RxMC method for a set of linearly independent chemi-
cal reactions involves the following trial moves:

(1) a change in the position or orientation of a molecule
which is chosen at random;

(2) a random change in the simulation box volume; and
(3) for a randomly chosen reaction and randomly

chosen reaction direction (forward or reverse),
reactant molecules are randomly chosen and deleted
while product molecules either replace reactant
molecules or are inserted randomly into the
simulation box.

Step (1) ensures that thermal equilibrium is established
for the specified temperature, Step (2) ensures that
mechanical equilibrium is established for the specified
pressure, and Step (3) ensures that chemical equilibrium
is established for the specified reactions.
Step (3) requires the insertion of product molecules

into the simulation box. For reactions where the number
of moles decreases or remains unchanged, the product
molecules can simply be placed in the space previously
occupied by the deleted reactant molecules. For reac-
tions where the number of moles increases, some of the
product molecules can replace reactant molecules but
the remaining product molecules must be inserted
into the simulation box. In the conventional sampling

scheme this entails randomly choosing a position in the
box. For medium to high density systems, this step can
result in a prohibitively low acceptance rate since a
random insertion will almost always result in an overlap
with molecules already in the box. Such an overlap is
energetically unfavourable and therefore the attempted
reaction step will nearly always be rejected. Below we
describe an algorithm that allows us to bias the insertion
of product molecules in such a way that cavities in the
system are found. This method of insertion would bias
the simulations if the ordinary acceptance rules were
used. Therefore, we next demonstrate that the correct
distribution of configurations can be sampled if the
acceptance rule for this step is modified appropriately.

2.2. General approach for bias
Monte Carlo sampling

For completeness, we first consider the general approach
for bias Monte Carlo sampling (see [25] for a more
thorough account). Let Kðo! nÞ be the flow of con-
figuration o! n, where

Kðo! nÞ ¼ NðoÞ � �ðo! nÞ � accðo! nÞ: ð1Þ

N(o) is the probability of being in configuration o;
�ðo! nÞ is the probability of generating configuration n;
and accðo! nÞ is the probability of accepting the move
from o! n. N, often referred to as the probability
density or distribution of configurations, depends on
the details of the ensemble and can be determined from
the partition function. For example, the probability of
finding configuration rN in the canonical ensemble is

NðrNÞ ¼
exp ��U rN

� �� �
R
drNexp

�
��U

�
rN
�� ð2Þ

where U(rN) is the configurational energy of N particles
and �¼ 1/kBT (kB is the Boltzmann constant and T is
the temperature).

To guarantee a correct sampling scheme, the detailed
balance condition is imposed

Kðo! nÞ ¼ Kðn! oÞ ð3Þ

or more specifically

NðoÞ � �ðo! nÞ � accðo! nÞ

¼ NðnÞ � �ðn! oÞ � accðn! oÞ: ð4Þ
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In the original Metropolis scheme, � is chosen to be a
symmetric matrix, i.e. �ðo! nÞ ¼ �ðn! oÞ. For a
biased Monte Carlo algorithm, we wish to generate
configurations in a biasing manner thus making
�ðo! nÞ 6¼ �ðn! oÞ. It is clear from equation (4),
that since �ðo! nÞ 6¼ �ðn! oÞ and N(o) and N(n) are
predetermined we must correct for biasing � by
changing the ratio accðo! nÞ=accðn! oÞ.
Suppose that we have developed a Monte Carlo

scheme to generate trial configurations with a prob-
ability that depends on the potential energy of that
configuration

�ðo! nÞ ¼ f ½UðnÞ� ð5Þ

and while for the reverse move

�ðn! oÞ ¼ f ½UðoÞ�: ð6Þ

From equation (4) then

accðo! nÞ

accðn! oÞ
¼

f UðoÞ½ �

f UðnÞ½ �

NðnÞ

NðoÞ
: ð7Þ

A possible acceptance rule that obeys this condition is

accðo! nÞ ¼ min 1,
f UðoÞ½ �

f UðnÞ½ �

NðnÞ

NðoÞ

� �
: ð8Þ

It is clear then that we can introduce an arbitrary
biasing function f [U] in the sampling scheme, provided
that the acceptance rule is modified in such a way that
the bias is removed [25]. Note that the same biasing
function must be used to generate the o configurations
and the n configurations.

2.3. Derivation of acceptance rule for CB-RxMC

For a reaction step in RxMC, the ratio of the
probability densities of the old ‘o’ and the new ‘n’
configurations can be written

NðnÞ

NðoÞ
¼
Ycj
i¼1

Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�j
� exp �� UiðnÞ �UiðoÞð Þ½ � ð9Þ

where cj is the total number of species in reaction j;
Ni is the total number of molecules of species i; �ji is
the stoichiometric coefficient of species i in reaction j;
�j is the molecular extent of reaction for reaction j;

qint,i is the quantum partition function for the internal
modes of an isolated molecule of species i, which
includes vibrational, rotational, and electronic; �i is the
thermal de Broglie wavelength of species i; and V is
the total volume of the system [1, 2]. Equation (9) is
appropriate for both forward and reverse reaction steps
(�j¼ 1 for a forward step and �j¼�1 for a reverse step),
where the stoichiometric coefficients are taken to be
positive for product species and negative for reactant
species. Ui is the configurational energy between
molecule i and all other molecules in the simulation
box, so for a deleted reactant molecule Ui(n)¼ 0, while
for an inserted product molecule Ui(o)¼ 0. From
equation (9) we can write the acceptance rule for a
reaction step using conventional sampling in RxMC as

accðo! nÞ ¼ min

"
1,
Ycj
i¼1

"
Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�j

� exp½�� UiðnÞ �UiðoÞð Þ�

##
: ð10Þ

Similar to other biasing algorithms [25], we can define
a Rosenbluth factor

WiðnÞ ¼
Xki
l¼1

exp ��Uiðl Þ½ �, ð11Þ

which, for a single attempted move, is determined by
generating ki trial configurations for species i, i.e. when i
is a reactant molecule ki trial deletions and when i is a
product molecule ki trial insertions. From these trial
configurations we can select a configuration, m, for
species i with a probability

f ðUiÞ ¼
exp ��UiðmÞ½ �Pki
l¼1 exp ��Uiðl Þ½ �

ð12Þ

where f (Ui) is a biasing function that ensures energeti-
cally favourable configurations are generated. The
expression for the complete reaction step is then

f ½UðoÞ� ¼
Ycj
i¼1

f ½UiðoÞ� ¼
Ycj
i¼1

exp½��UiðoÞ�Pki
l¼1 exp½��U

o
i ðl Þ�

ð13Þ

where we can write an analogous expression for f [U(n)].
Substituting expressions for f [U(o)], f [U(n)] and

equation (9) into equation (7) we get the probability

Cavity-bias sampling in reaction ensemble Monte Carlo simulations 2649



of accepting the reaction step attempt as

accðo! nÞ

accðn! oÞ

¼
Ycj
i¼1

"
Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�j
exp½��ðUiðnÞ �UiðoÞÞ�

�
exp½��UiðoÞ�Pki
l¼1 exp½��U

o
i ðl Þ�

Pki
l¼1 exp½��U

n
i ðl Þ�

exp½��UiðnÞ�

#

ð14Þ

while after simplifying we get

accðo! nÞ

accðn! oÞ

¼
Ycj
i¼1

Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�jPki
l¼1 exp½��U

n
i ðl Þ�Pki

l¼1 exp½��U
o
i ðl Þ�

" #
:

ð15Þ

Finally then, the acceptance rule for a reaction step
that satisfies the detailed balance condition is

accðo! nÞ ¼ min

"
1,
Ycj
i¼1

"
Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�j

�

Pki
l¼1 exp½��U

n
i ðl Þ�Pki

l¼1 exp½��U
o
i ðl Þ�

##
: ð16Þ

Recall that when i is a deleted reactant molecule,
Un

i ðl Þ ¼ 0 for all l’s, so
Pki

l¼1 exp½��U
n
i ðl Þ� ¼ ki.

Likewise, when i is an inserted product molecule,
Uo

i ðl Þ ¼ 0 for all l’s, so
Pki

l¼1 exp½��U
o
i ðl Þ� ¼ ki.

Finally, note that when ki¼ 1 for all species,
equation (16) reduces to the conventional sampling
acceptance rule given in equation (10).
With minor extensions, the above scheme can be

applied to include orientational-biasing algorithms for
molecular models with a strong dependence on relative
orientation (e.g. polar and hydrogen-bonded molecules
and multi-atomic models) or configurational-biasing
schemes for chain-like molecules [25]. Using the
Rosenbluth factors, equation (15) can be generalized
to accommodate such biasing schemes by writing

accðo! nÞ

accðn! oÞ
¼
Ycj
i¼1

Ni!

ðNi þ �ji�jÞ!

qint, iV

�3
i

� ��ji�jWiðnÞ

WiðoÞ

" #
:

ð17Þ

Appropriate evaluation of the Rosenbluth factors for
the particular scheme is required.

2.4. CB-RxMC algorithm

Next, we provide a detailed outline for implementing the
CB-RxMC algorithm. For simplicity, consider a system
of J reactions where all reacting species are modelled
as single spheres and electrostatic contributions are
ignored. (Again, this algorithm can be readily extended
to include multi-atomic and electrostatic molecular
models.)

Step 1: Randomly choose reaction j and the reaction
direction (forward or reverse).

Step 2: Randomly select reactant molecules and
determine exp½��Uo

i ð1Þ� for each of these
reactant molecules, where l¼ 1.

Step 3: For each reactant molecule, generate ki� 1
trial configurations denoted b2 . . . bki and
determine

Pki
l¼2 exp½��U

o
i ðblÞ�. Note that for

reactants whose centre-of-mass will be
replaced by the centre-of-mass of a product
molecule, ki¼ 1.

Step 4: For product molecules whose centre-of-mass
will replace the centre-of-mass of a deleted
reactant molecule, determine exp½��Un

i ð1Þ�
where l¼ 1, and set ki¼ 1.

Step 5: For the remaining product molecules that
need to be inserted for reaction j, generate ki
trial configurations, denoted b1 . . . bki , by
randomly inserting the product molecule
into the simulation box and determinePki

l¼1 exp½��U
n
i ðblÞ�. From these ki insertions,

select one with the probability given in
equation (12).

Step 6: The attempted reaction step for reaction j
is accepted with the probability given in
equation (16).

It is implicitly assumed that when product molecules
are inserted they are placed in the locations previously
occupied by reactant molecules. This is not a require-
ment of the RxMC method but for most cases will
enhance the phase sampling efficiency. Moreover,
replacing reactant molecules with product molecules
which have similar molecular model character (e.g. size,
atomistic detail, or polarity) will further increase
sampling efficiency. However, the reactant-to-product
replacement must be consistent for the forward and
reverse directions for a particular reaction throughout
the simulation run. For example, if a type a molecule is
replaced by a type b molecule in the forward direction of
a reaction step, then a type b molecule must be replaced
by a type a molecule in the reverse direction [1, 2].

2650 J. K. Brennan



An alternative but less efficient approach (for most
cases) would be to randomly insert all product
molecules. The necessary minor adjustments to the
above algorithm would be to ignore the last sentence in
Step 3 and to remove Step 4. Finally, additional trial
insertions could be attempted beyond simply replacing
a reactant molecule with a product molecule. This may
improve the acceptance rate in cases where the
molecular model character of the corresponding product
and reactant are markedly dissimilar. If additional trial
insertions are attempted, then ki 6¼ 1 in Steps 3 and 4.

2.5. Choice of ki

The efficiency of the CB-RxMC algorithm depends on
the choice of ki, the number of trial insertions for a
given product molecule. In principle, ki can be chosen
without restrictions; however, there is a computational
expense to be paid for increasing the number of
attempted insertions. The optimal choice of ki will
allow for sampling of a wide portion of phase space but
in a cost effective manner. A straightforward approach
for selecting ki is to adjust its value based on a desired
acceptance ratio for each reaction. ki could then be
adjusted automatically during the simulation, analogous
to the adjustments which are typically made to the
maximum allowable changes for particle displacements
and volume changes [25, 26]. For some systems,
however, as ki is increased, eventually the computational
cost of additional trial insertions will outweigh the
benefits of an increased acceptance ratio. In the fol-
lowing, we propose some simple guidelines for optimiz-
ing the CB-RxMC algorithm with respect to ki. The
approach is based on previous work that optimized a
configurational-bias Monte Carlo method applied to
chain molecules [27].
We approximate the efficiency of the CB-RxMC

scheme to be: (a) proportional to the probability that a
given trial configuration is successfully generated; and
(b) inversely proportional to the computational cost of
generating a configuration. We can write then that

Efficiency ¼
acceptance
� �

costh i
ð18Þ

where hacceptancei is the average acceptance ratio
defined as the number of accepted reaction steps over
the number of attempted reaction steps for the entire
simulation run, while hcosti is the average computa-
tional cost of generating an attempted reaction. In
practice, a series of short simulations can be performed
for various ki’s to determine the Efficiency as a function
of ki. The maximum in the Efficiency vs. ki plot will
then provide the optimal value for ki. As the number

of trial insertions increases, the value of hcosti rises.
From equation (18), we expect that for systems where
the probability of successful insertions will be high, e.g.
low density systems, the optimal value of ki will increase
monotonically with increasing ki. However for high
density systems in which hacceptancei marginally
increases with ki, the optimal value of ki will shift to
lower values.

Note that for multiple reaction systems the value of
ki is not required to be the same for all reactions, but
it does need to be the same for each reactant-to-product
replacement pair for a particular reaction. Also, the
choice of ki will strongly depend on the state point
considered as well as the details of the molecular models.
Typical values of ki range from 2–200 attempted
insertions since reaction acceptance ratios can vary
widely.

3. Application

We illustrate the method using the reacting system,
2H2OþC2H4, 2COþ 4H2. The forward reaction
requires the insertion of three product molecules into
the simulation box and therefore provides a stringent
test for the CB-RxMC algorithm.

3.1. Molecular models and computational details

The molecular species C2H4, CO, and H2 are modelled
as single spherical particles interacting through the
exponential-6 potential where electrostatic contributions
are ignored [28]. The water model consists of an
exponential-6 group at the oxygen centre and a set of
three fixed-point charges [29].

Unlike interactions between species are approximated
by the Lorentz–Berthelot mixing rules [30]. A spherical
cutoff of 1.05 nm was applied for the particle–particle
interactions with standard corrections for this trunca-
tion added [26]. Long-range electrostatic interactions
were determined by using the Ewald summation
method [26]. Applying a prescription for optimizing
the Ewald parameters [31, 32] led to approximately
1000–1200 wave vectors used in the k-space sum where
the same truncation distance as above was applied for
the real space sum. The ideal-gas partition functions for
H2O, C2H4, CO, and H2 that are required in the RxMC
method were taken from standard thermochemical
reference data [22].

Simulations were performed in steps, where a step
(chosen with equal probability) was either a molecule
displacement and rotation (for H2O molecules only),
a forward reaction step, or a reverse reaction step.
A change in the simulation cell volume was attempted
every 3000 steps. The maximum allowable changes for

Cavity-bias sampling in reaction ensemble Monte Carlo simulations 2651



the displacement, rotation, and volume change steps
were all adjusted to achieve an acceptance fraction
of 0.4. Simulations were equilibrated for 2–3� 106 steps
after which averages of the desired quantities were
taken over 5� 106 steps. Reported uncertainties were
estimated using the method of block averages [25].

3.2. Results

A series of constant-pressure RxMC simulations for the
2H2OþC2H4, 2COþ 4H2 reaction were performed
at a temperature of 900K. The initial configuration for
each simulation was 250 H2O molecules and 350 C2H4

molecules placed randomly on a face-centred-cubic
lattice. Several pressures were considered (100, 300 and
500MPa) that span a range of densities. Further, a wide
range of ki values were considered: 1, 5, 10, 20, 40,
80, and 120. Simulations where ki¼ 1, represent conven-
tional sampling of reactions steps in the RxMC method.
CB-RxMC simulation results are presented in

table 1. The average configurational energy, U, and
specific volume, �, are reported along with the average

number of molecules for each species, Ni. As expected,
for all values of ki the calculated quantities are within
estimated uncertainties. Effects of increasing ki can be
seen by considering the changes in the acceptance ratio
which is also reported in table 1. The definition of the
acceptance ratio is the same as that used in equation
(18). (Note that at equilibrium the forward and reverse
reaction acceptance ratios will be equal, therefore only
one value is reported.) Table 1 shows that as the number
of trial insertions increases, the acceptance ratio also
increases. The acceptance ratios for the three pressures
considered improve by factors of about 3, 11 and 23,
respectively.

Next, we can determine an estimate for the optimal
value of ki using the guidelines presented in section 2.5.
In order to dimensionalize hcosti in equation (18), we
have introduced a unit of computational cost to be the
time needed to compute equation (16) when ki¼ 1 for
all species. A plot of the Efficiency as a function of ki is
given in figure 1, where the plotted values are also given
in table 2. Ensemble averages of hacceptancei and hcosti
were determined from the entire simulation run. All

Table 1. CB-RxMC simulation results for the 2H2OþC2H4, 2COþ 4H2 reaction.
a

ki U [kJ/mol] � [cm3/g]

Ni
b

Acceptance

ratioH2O CO H2 C2H4

P¼ 100MPa

1 �2.930 (0.031) 4.428 (0.011) 201.3 (0.3) 48.7 (0.3) 96.5 (0.6) 325.7 (0.2) 0.1329

5 �2.929 (0.032) 4.422 (0.017) 201.2 (0.2) 48.7 (0.2) 97.5 (0.5) 325.6 (0.1) 0.3445

10 �2.937 (0.023) 4.427 (0.015) 201.3 (0.1) 48.7 (0.2) 97.3 (0.3) 325.7 (0.1) 0.3718

20 �2.930 (0.035) 4.426 (0.014) 201.3 (0.3) 48.7 (0.3) 97.4 (0.5) 325.6 (0.1) 0.3870

40 �2.950 (0.033) 4.422 (0.018) 201.4 (0.3) 48.6 (0.3) 97.1 (0.5) 325.7 (0.1) 0.3939

80 �2.933 (0.039) 4.423 (0.020) 201.3 (0.3) 48.7 (0.3) 97.4 (0.6) 325.7 (0.2) 0.3989

120 �2.922 (0.031) 4.429 (0.016) 201.3 (0.2) 48.7 (0.2) 97.4 (0.5) 325.6 (0.1) 0.4017

P¼ 300MPa

1 �6.526 (0.128) 2.169 (0.006) 232.2 (0.3) 17.7 (0.3) 34.5 (0.6) 341.2 (0.2) 0.0141

5 �6.713 (0.147) 2.157 (0.012) 232.6 (0.3) 17.4 (0.3) 34.7 (0.5) 341.3 (0.1) 0.0844

10 �6.494 (0.117) 2.170 (0.008) 232.3 (0.3) 17.7 (0.3) 35.5 (0.5) 341.1 (0.1) 0.1212

20 �6.553 (0.127) 2.167 (0.008) 232.3 (0.3) 17.7 (0.3) 35.3 (0.6) 341.2 (0.2) 0.1361

40 �6.518 (0.110) 2.169 (0.007) 232.3 (0.3) 17.7 (0.3) 35.4 (0.6) 341.1 (0.2) 0.1461

80 �6.487 (0.084) 2.170 (0.005) 232.2 (0.2) 17.8 (0.2) 35.5 (0.4) 341.1 (0.1) 0.1508

120 �6.368 (0.130) 2.176 (0.008) 231.9 (0.4) 18.1 (0.3) 35.1 (0.5) 341.0 (0.1) 0.1565

P¼ 500MPa

1 �7.819 (0.089) 1.755 (0.005) 239.5 (0.3) 10.5 (0.3) 20.9 (0.5) 344.7 (0.1) 0.0037

5 �8.024 (0.242) 1.746 (0.006) 239.9 (0.2) 10.2 (0.2) 20.4 (0.5) 344.9 (0.1) 0.0321

10 �7.818 (0.142) 1.753 (0.003) 239.5 (0.2) 10.4 (0.2) 20.9 (0.4) 344.8 (0.1) 0.0549

20 �7.758 (0.080) 1.756 (0.003) 239.5 (0.2) 10.5 (0.2) 21.0 (0.3) 344.7 (0.1) 0.0707

40 �7.742 (0.130) 1.757 (0.005) 239.4 (0.2) 10.6 (0.2) 21.1 (0.3) 344.7 (0.1) 0.0814

80 �7.834 (0.129) 1.756 (0.005) 239.5 (0.2) 10.5 (0.2) 21.0 (0.4) 344.8 (0.1) 0.0844

120 �7.859 (0.117) 1.753 (0.004) 239.5 (0.2) 10.5 (0.2) 20.9 (0.3) 344.8 (0.1) 0.0852

aUncertainty in units of the last decimal digit is given in parentheses: �2.930 (0.031) implies �2.930� 0.031.
bNumber of molecules of species i.
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three curves exhibit similar behaviour although the
behaviour is most pronounced for the 100MPa case.
Comparing the three curves, for all values of ki the
efficiency decreases as the pressure (and corresponding
density) of the system increases. This is expected since
the space available for product molecule insertion is also
reduced with increasing pressure. The maximum for the
100MPa system is at approximately ki¼ 20, while
the maximum for the 300 and 500MPa systems is at
approximately ki¼ 40. However, significant gains in
the efficiency of the CB-RxMC algorithm are found
for rather small values of ki just beyond conventional
sampling (ki¼ 1), i.e. ki¼ 5, 10. Beyond the maximum

values of ki for each pressure considered, the efficiency
begins to decrease. This can more clearly be seen by
considering table 2. For the 300 and 500MPa cases it
is evident that attempting more than 40 trial insertions
per reaction step is not beneficial. Moreover, given the
flatness of the curves at high ki as well as the steep rise at
low ki, the most practical value for ki is approximately
15–20 trial insertions per attempted reaction. For the
100MPa case, the optimal value of ki is more obvious,
i.e. ki¼ 20.

4. Conclusions

A cavity-bias algorithm was presented that increases
the acceptance rate of reaction steps in the reaction
ensemble Monte Carlo method. For some cases, the
CB-RxMC method is shown to increase acceptance
rates for the reaction step by a factor greater than 20.
CB-RxMC enhances phase space sampling but more
critically allows for the simulation of systems not
feasible with conventional random sampling. CB-RxMC
is an extension of other cavity-bias sampling techniques
used in the grand canonical ensemble MC method [18].
The main bottleneck of an RxMC simulation is
the insertion of product molecules into the simulation
box during a reaction step. In a biased fashion, the
CB-RxMC method generates energetically favourable
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Figure 1. Efficiency of the CB-RxMC algorithm as a function of the number of trial insertions for the
2H2OþC2H4, 2COþ 4H2 reaction at the three pressures considered. Line is shown as a guide to the eye only.

Table 2. Efficiency at various ki values for the
2H2OþC2H4, 2COþ 4H2 reaction.

ki

Efficiencya

100MPa 300MPa 500MPa

1 0.133 0.014 0.0037

5 0.343 0.084 0.0319

10 0.364 0.119 0.0538

20 0.375 0.132 0.0684

40 0.369 0.137 0.0762

80 0.349 0.132 0.0739

120 0.332 0.129 0.0704

aEfficiency determined from equation (18).
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positions for these molecules by searching for cavities in
the system. The bias introduced when generating
positions is then corrected for in the acceptance criteria.
For a given state point, the efficiency of the CB-RxMC
technique depends on the number of trial insertions (ki)
for each attempted reaction step. A tradeoff exists
between the additional computational expense of gen-
erating ki configurations for a single attempted reaction
and overall phase space sampling. A simple approach
was suggested for optimizing the value of ki.
With minor modifications, the algorithm presented

here could include orientational-bias techniques for
polar molecules as well as biased sampling techniques
for inserting long-chain molecules [25 and references
therein].
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